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Wave fronts and spatiotemporal chaos in an array of coupled Lorenz oscillators
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The effects of coupling strength and single-cell dynamics~SCD! on spatiotemporal pattern formation are
studied in an array of Lorenz oscillators. Different spatiotemporal structures~stationary patterns, propagating
wave fronts, short wavelength bifurcation! arise for bistable SCD, and two well differentiated types of spa-
tiotemporal chaos for chaotic SCD~in correspondence with the transition from stationary patterns to propa-
gating fronts!. Wave-front propagation in the bistable regime is studied in terms of global bifurcation theory,
while a short wavelength pattern region emerges through a pitchfork bifurcation.
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s
in
ra

e
ly
s

in
th

tw
at
th

ce
v
tte
tin
e
a

ly
le
o

ca

di-

e
its

s a
e-
ist-
est
rks

tu-
re all

ly
as

-

rix
nt

hort
ber
I. INTRODUCTION

The study of networks of coupled systems is an intere
ing issue from both mathematical and applied physics po
of view. In this paper, we focus on a one-dimensional ar
of systems such that each cell evolves in time according
an ordinary differential equation~ODE!. Assemblies of this
kind are known aslattice dynamical systems~LDS’s!. The
simplification arises from the fact that units are describ
just by ODE’s, so the field of application is significant
wide: lasers@1#, neural systems@2#, Josephson junction
@3,4#, reaction-diffusion systems@5#, and electronic oscilla-
tors @6,7#, among others. LDS’s are relevant not only
physics, but also in biology. Paradigmatic examples are
Nagumo@8# and the FitzHugh-Nagumo@9# models, where
the dynamics of a single unit is described by one and
variables, respectively. Phenomena such as the propag
of traveling wave fronts have been studied from a ma
ematical point of view@10–14#.

However, cases where the dynamics of a single
within an array is described by two or more variables ha
aroused a great deal of interest in recent years. Here pa
formation arising in bistable systems can show interes
properties@15#, and if the array consists of a certain numb
of coupled chaotic oscillators complex behaviors, such
nontrivial collective behavior@16#, size instability@17#, ro-
tating waves@18,19# or partial synchronization@20# can de-
velop. What behaviors may be expected and what exact
the role of the coupling strength are just two of the unsett
questions. Here we try to gain some insight into these pr
lems.

In this paper, we study an array made up of identi
units. The coupling among them is of diffusive type~i.e.,
bidirectional!,

ṙ j5 f ~r j !1
D

2
G~r j 111r j 2122r j !, ~1!

where r jPRn. D is the coupling parameter, andG is the
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coupling matrix. Although the casen51 has been studied
extensively, there exists a large gap referring to greater
mensions (n.1).

II. MODEL

The type of functionf in Eq. ~1!, the coupling strengthD,
and the coupling matrixG determine the dynamics of th
whole array. Due to its well studied phase space and
richness of behaviors, we deal with the Lorenz oscillator a
unit cell (n53). In particular, we focus on the bistable r
gion and the transition to the chaotic region. Arrays cons
ing of Lorenz oscillators connected through a local, near
neighbor coupling have been considered in recent wo
@15,21,22#.

In what concerns the type of coupling matrix, several si
ations seem to be quite natural. These are the cases whe
the elements ofG are zero except one~that we take to be
equal to 1!. The caseG5I has been studied very recent
@21,22#. Three situations are of special interest as long
they present front propagation~this phenomenon will be ex
plained in detail below!:

G5S 0 1 0

0 0 0

0 0 0
D , S 0 0 0

1 0 0

0 0 0
D , S 0 0 0

0 1 0

0 0 0
D .

~2!

For the rest of the coupling matrices, the identity mat
or matrices with one element different from zero, no fro
propagation has been obtained numerically@23#. We decided
to focus on the first coupling matrix in Eq.~2! since in this
case, as will be shown later, the system undergoes a s
wavelength bifurcation which enriches the kind and num
of patterns described later.

Thus our dynamical equations are

ẋ j5s~yj2xj !1
D

2
~yj 111yj 2122yj !,

ẏ j5rx j2xjzj2yj , j 51, . . . ,N

żj5xjyj2bzj . ~3!
©2001 The American Physical Society06-1
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FIG. 1. Phase space of the patterns obtained for an array of coupled Lorenz oscillators. Left regions correspond tor ,r H where the
Lorenz oscillator is bistable, and right regions correspond tor .r H where the Lorenz oscillator is chaotic. A representative tempo
evolution of a ring is located for each zone. They display, in gray scale, thex coordinate vs time that runs downward; initial conditions a
random. Each region corresponds to a different characteristic dynamics. Region I: multistability~i.e., spatial chaos!. Region II: front
propagation. Region III: short-wavelength ordering. Region V: spatiotemporal chaos. Region VI: spatiotemporal chaos with front p
tion. Region VII: short-wavelength ordering with transient chaos. Region IV: spatiotemporal chaos without clusters. Solid lines cor
to theoretical resultsDC andDN @Eqs.~6! and ~7!, respectively#.
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Off-diagonal diffusive-type coupling appears in mecha
cal models with elastic junctions, like the stick-slip Burridg
Knopoff model~see, e.g., Ref.@24#, and references therein!.
Moreover, in terms of an electronic caricature, this coupl
represents an active transmission line where cells are cou
through capacitances and inductances.

Both periodic and null-flow boundary conditions are use
The parameterss and b are fixed at the valuess510 and
b58/3. The other relevant parameter besides the coup
strengthD is r, that controls the internal state~chaotic or
bistable! of the oscillators. For the dynamics of a single un
there exists a critical value

r H5
s~s1b13!

s2b21
, ~4!

which for the given values ofs and b is r H'24.74. For 1
,r ,r H the units are bistable, with two symmetric stab
fixed pointsC65@6Ab(r 21),6Ab(r 21),r 21# and one
unstable fixed point at the origin. Forr .r H all the fixed
points are unstable and the unit exhibits the well known L
renz strange attractor.

A fourth-order Runge-Kutta method was used to integr
Eq. ~3!. A diagram of the patterns obtained by varyingD and
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r is shown in Fig. 1. We analyze the bistable region in S
III, and the chaotic one in Sec. IV.

III. BISTABLE REGION

As mentioned above, the single-unit fixed pointsC6 are
stable in the range~1, r H). Therefore, the whole system i
multistable in that range@25# for D50.

A. Traveling fronts

Traveling front propagation has been a long-term field
research. Restricting ourselves to the bistable case, ther
two paradigmatic examples: the Nagumo and FitzHu
Nagumo equations. Classically, fronts connect a pair
stable fixed points and propagate, driving the system tow
its most stable state. Consider, for example, one-varia
cells, namely, u̇n5 f (un)1D(un111un2122un). Then
propagation will only succeed if* f (u)duÞ0. Furthermore,
it does not occur untilD is larger than a critical valueDth .
Because of the discreteness of the system,Dth.0, while
Dth50 for the continuous version. The existence of a thre
old for the discrete systems is called ‘‘propagation failur
@10#.
6-2



e
s

a
n
p
t

e

y
th

ing

for

l-
ot

o
the

ur-
ro-

e
n

n,
ori-
-
n.

een

ts
-
al
me-
ce.
a

e
nt
sh

c
tab
se

WAVE FRONTS AND SPATIOTEMPORAL CHAOS IN AN . . . PHYSICAL REVIEW E63 066206
Propagation in continuous bistable systems has been
tensively studied in Ref.@26#; showing that propagation i
possible in symmetric nongradientreaction-diffusion sys-
tems. It is known that a transition from a static front to
propagating front involves a symmetry breaking of the fro
@26# through a pitchfork bifurcation. Here we show an a
parently new way to break symmetry and, therefore,
achieve propagation for the discrete case. For the Lor
oscillator, we havesymmetry under the transformation
(x,y,z)→(2x,2y,z), implying two stablesymmetricfixed
points (C6). Beyond a critical valueDth , fronts can propa-
gate in both senses with the same probability~because of the
symmetry of the equations!. Discreteness has traditionall
been considered as a propagation inhibitor, but it is just
discreteness that now provides a route for propagation.

In Fig. 2 the effect of varyingD for our bistable single

FIG. 2. A steplike initial condition is imposed for a ring ofN
550 oscillators (r 520): r i'C1 ,i 51, . . . ,25 and r j'C2 , j
526, . . .,50. The value of the variablex is represented in gray
scale. For high enoughD, fronts start to propagate. Just on th
threshold (Dth56.6652) the system is not able to propagate fro
without undergoing spontaneous reversals. Just above the thre
the propagation does not change its sense spontaneously. In the
shown here, both fronts move in the same sense, giving a s
traveling-wave solution; if both fronts propagate in opposite sen
the whole ring will collapse toC1 or C2 .
06620
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cell dynamics is depicted. The transition to the propagat
solution is as follows: as the coefficientD is increased,
boundaries between domains of both solutions (C1 andC2!
become smoother than the steplike boundary observed
D50. That is, some oscillators move to the vicinity ofC1

andC2 . At a given value ofD the boundaries start to osci
late, i.e., they undergo a Hopf bifurcation, but they do n
propagate~seeD56.6 in Fig. 2!, until finally, over a thresh-
old Dth , propagation occurs. If the array is open~null-flow
boundary condition!, the whole system finally collapses t
one of the two stable solutions. On the other hand, for
case of a ring~periodic boundary condition!, stationary trav-
eling wave-front solutions can be found.

In order to obtain a more precise knowledge of the bif
cation arising in the system, in Fig. 3 we represent the p
jection, onto the planex-y, of the trajectory followed by all
the oscillators of the array. ForD50, oscillators are in a
steplike configuration; asD increases, a few cells in th
neighborhood of the border of the steplike initial conditio
go to nearby points toC1 andC2 . At D'6.92 the symme-
try of the system is broken through a pitchfork bifurcatio
and is recovered when one of the oscillators reaches the
gin at D'6.95. At D'7.5 the stationary front solution be
comes unstable through a supercritical Hopf bifurcatio
This corresponds to the point where the boundary betw
both domains begins to oscillate~see Fig. 2!. The amplitude
of the oscillations grows withD. Finally, for D5Dth'8.85,
the orbit of each oscillator collides with the orbits of i
neighbors@27#. This collision originates a multiple hetero
clinic connection. If the system is infinite, in terms of glob
coordinates, the situation can be reduced to a pair of sym
try related homoclinic connections in a periodic phase spa
This situation is similar to the pendulum problem, where
set of separatrices~two in a cylindrical phase space! divide
the phase space into several characteristic dynamics~libra-
tion and two opposite senses of rotation!. Thus, in the last
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FIG. 3. Transition to propaga
tion of a front from the trivial so-
lution at D50 asD increases. A
projection onto thex-y plane of
the trajectory, followed by the os
cillators of the array, is shown for
r 58 and different values of the
coupling strengthD. For 0,D
,6,92 the system is odd symme
ric in the x-y plane. ForD'6.92
this symmetry is broken through a
pitchfork bifurcation, but is recov-
ered again forD'6.95. At D
'7.55 the system undergoes a s
percritical Hopf bifurcation, so
that the front starts to oscillate. A
further increase ofD enlarges the
orbit of each oscillator. Finally,
for D'8.85, all the orbits collide
with their neighbor orbits. For a
largerD, propagation occurs.
6-3
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picture of Fig. 3, when propagation occurs the oscillat
follow a trajectory fromC1 to C2 , close to the set of het
eroclinic orbits. The opposite solution~from C2 to C1) is
also possible, and is odd symmetric compared to the
displayed in Fig. 3.

The front velocityc, near the onset, arising from this rou
does not follow a square root law withD2Dth , as is usually
found for other systems~see Fig. 4!; instead it shows an
inflection point for middle values ofD, and near the thresh
old valuec grows abruptly. In Ref.@28# the author found a
system ~for n51! that belongs to a different universalit
class, but propagation occurs only in the presence ofasym-
metry. A detailed analysis of the front velocity for the rou
explained above will be published elsewhere.

B. Short-wavelength bifurcation

The trivial solutionsr15r25•••5rN5C6 are stable up
to a critical value of the coupling parameterD. For this
value, a short-wavelength bifurcation arises~see Fig. 1!, and
a stationary pattern~zigzag! develops consisting of an alte
nate sequence of cells in the vicinity ofC1 ~or C2). This
pattern can coexist for some time with front propagatio
and, in this case, at both sides of the wave front, for e
domain, the zigzag pattern has been observed.

For a ring, the observed critical value fits very well wi
that calculated (DC) from a linear stability analysis of the
Fourier modes around any of the fixed pointsC6 . The secu-
lar equation for the Fourier modes (hk) is

ḣk5S~k!hk ,

S~k!5S 2s s22D sin2S pk

N D 0

1 21 7 c̄

6 c̄ 6 c̄ 2b

D , ~5!

where c̄5Ab(r 21). The real part of the most unstable e
genvalue is plotted in Fig. 5 as a function ofk for different

FIG. 4. Front propagation speed~c! as a function of the coupling
strengthD for r 58. t.u. ~time units!.
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values ofD. For k50 the stability is independent ofD, and
the fixed point is a spiral sink~because the less attractin
eigenvalues are complex conjugates!. However, for a large
enough value ofD, the shortest wavelength Fourier mod
(k'N/2) are governed by the real eigenvalue. The ma
mum value of this eigenvalue is atk5N/2 ~shortest wave-
length!, and crosses zero atD5DC . At this point, the deter-
minant of the Jacobian matrixS(k5N/2) is zero. This
condition gives the value ofDC :

DC5s
r 21

r 22
. ~6!

The result for an open array is the same as that for a ring
to O(1/N2). Above this critical value other modes becom
unstable, and the dynamics turns out to be more comp
than the one shown in the top pictures of Fig. 1.

IV. CHAOTIC REGION

At r 5r H the single unit fixed pointsC6 become unstable
through a subcritical Hopf bifurcation. The behavior of a
isolated Lorenz oscillator then becomes chaotic forr>r H .
The system does not possess any stationary or periodic s
state.

For D50 the oscillators are uncoupled, and the who
system is highly chaotic. The situation persists for low v
ues ofD. Finally, as the coupling increases, the system te
to form clusters aroundC1 and C2 . The development of
clusters occurs in a very smooth way; hence a precise l
cannot be assigned to such transition. An analytical calc
tion shows the tendency toward cluster formation asr grows.
The latter proceeds through calculations of the eigenva
of the system at the uniform state~all the oscillators are in
the same fixed point!. We first note that atD50 all Fourier
modes are unstable~assumingr .r H). But, as long asD
increases enough, there is a Fourier mode that beco
stable. This mode isk5N/2 ~the shortest wavelength mode!;
the fact that this mode becomes stable causes the dyna

FIG. 5. Maximum eigenvalues at the uniform states inC6 as a
function of k for D51,2, . . . ,11 andr 520.
6-4
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FIG. 6. Different behaviors for
several couplings~D! for r 528
~the same initial condition was
imposed in all cases!. The behav-
ior of the system changes drast
cally at two values ofD. One
point separates propagation an
no propagation of fronts, and is
located betweenD56 and 7. The
second point separates the zo
where short-wavelength bifurca
tion arises, and is located jus
above D5s510. In the picture
corresponding toD511, the sys-
tem suffers a short-wavelength b
furcation with two dislocations
~located at the center and at th
right-hand side!.
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of neighboring oscillators to diverge less strongly than
fore; this can be considered as the beginning of cluster
mation. The value ofD corresponding to this point is a func
tion of r:

DN5
~s111b!b~s1r !22sb~r 21!

2@s111b~32r !#
. ~7!

The corresponding curve is shown in Fig. 1. On the ot
hand, the maximum transverse Lyapunov exponentslk>1 of
each modehk , calculated around the chaotic synchroniz
state~see, e.g., Ref.@29#!, show a dependence onD equiva-
lent to the behavior of the Lyapunov exponents at the fix
points, but the modek5N/2 becomes stable at a larger val
of D. The system ‘‘prefers’’ to form clusters around fixe
points rather than forming an extended coherent struc
~consisting for example of some cells of the array partia
synchronized! with the Lorenz chaotic attractor as the ba
for each cell dynamics. Since our clusters are defined
long-lasting ensemble of cells close toC1 or C2 , transverse
Lyapunov exponents around the chaotic synchronized s
do not give any new information.

At higher values ofD, for which traveling waves ap
peared for r ,r H , now the array forms clusters whos
06620
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boundaries propagate as traveling waves~see Figs. 1 and 6!.
Because of the instability of the fixed points, front revers
are observed, as is the spontaneous formation of new clu
through the appearance of two counter propagating fro
The formation of new clusters becomes more frequent ar
grows. So, forr just abover H , the whole array is maintained
for a long time, with all the oscillators turning around one
the fixed points~eitherC1 or C2), until two counterpropa-
gating fronts are able to emerge. Recall that, independe
of the initial conditions, the onset of traveling fronts mak
the system collapse aroundC1 or C2 . For this situation, the
phase (f) and amplitude~A! can be properly defined@30# by
means of the projection shown in Fig. 7. We chose to de
phase and amplitude as follows@31#:

f5arctanSAx21y22A2b~r 21!

z2~r 21!
D , ~8!

A25@ uxu2Ab~r 21!#21@ uyu2Ab~r 21!#21@z2~r 21!#2.
~9!

There are domains where the phase of the neighbor o
lators is highly correlated~see Fig. 8!. The limits of these
domains are oscillators whose amplitude is zero or close
zero, and could be considered as defects~in analogy with the
6-5
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Ginzburg-Landau~GL! equation phenomenology!. The sub-
critical Hopf bifurcation observed in the Lorenz oscillat
does not involve a pair of stable limit cycles~one for C1 ,
and another forC2!. There is not a range of values ofr
where the system presents multistability between a li
cycle and a fixed point@32,33#. Therefore, the transition ob
served in the array cannot be considered simply as a
cretized subcritical GL transition inC1 or C2 @34,35#.

Finally, it must be pointed out that, asr grows, the fixed
points C6 become more and more unstable. As a con
quence, cluster sizes become smaller, and eventually it is
possible to distinguish between nonpropagating and pro
gating regions.

With respect to the short-wavelength bifurcation arisi
in the bistable region, this structure remains stable bey
r H . The ~Hopf! instability of C6 does not affect the zigza
structures bifurcated from the uniform solutions. An analy
cal calculation of the stability of these patterns is not fe
sible, because the solutions depend on bothr and D. How-
ever, we can argue that the result obtained in Eq.~6! can be
extended successfully to the chaotic region~Fig. 1!. In this
region the modek50 is unstable, and asr increases further
from r H some long wavelength modes (k51,2, . . . ) also
become unstable. So, in this zone, the problem is harde
treat than in the bistable zone, because there is more than
unstable mode. The dynamics of the system is determine
the behavior of each Fourier mode. Whereask50 is unstable
~independently ofD), long-wavelength modes stabilize asD
increases. On the other hand, short-wavelength modes
come stable for lowD but turn unstable again whenD ap-
proachesDC . Therefore, the shortest-wavelength mod
govern the dynamics at high values ofD. Due to the chaotic
dynamics existing forr .r H , the system is eventually clos
enough to one of the uniform solutions, and then is shifted
one of the frozen zigzag patterns.

V. CONCLUSIONS

This paper studies an array of oscillators where wa
front solutions arise. Starting from the uncoupled case, w

FIG. 7. Dynamics of one oscillator forD58 and r 525 in a
reference framework where phase can be readily computed.
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D reaches a critical value fronts start to oscillate due to
onset of a supercritical Hopf bifurcation. WhenD is in-
creased further, the amplitude of the oscillations grows u
two symmetry related heteroclinic connections appear
further increasing ofD causes propagation of the fronts. F
this kind of route to front propagation, wave velocity was n
found to follow a square root law withD2Dth . Moreover, it
seems that this route to propagation needs of units wh
dimension is two or more. The Hopf bifurcation is an esse
tial ingredient, and each unit needs a two-dimensional ma
fold to oscillate.

Furthermore, it has been shown that once the fixed po
become unstable forD,DC , the system exhibits two type
of spatiotemporal chaos depending on whether front pro
gation exists or not. In the propagating region we find tw
characteristic processes: spontaneous creation of cou
propagating fronts and front reversal. The boundary t
separated propagating and nonpropagating regions in
bistable case now separates these two kinds of spatiotem
ral chaos.

We have also found that over a certain coupling the s
tem undergoes ashort-wavelength bifurcation. This kind of
bifurcation is observed in discrete systems only; we also

FIG. 8. The system forD58 andr 525, 26, 27, and 28. Each
value of r shows three pictures, from left to right:x variable, am-
plitude, and two-color-discretized phase. As long asr increases the
phase correlation diminishes, because of the appearance of
fronts and defects~small amplitude, i.e., white color!.
6-6
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served the onset of propagating fronts by the route expla
above. We have also observed that this short-wavelength
tern inhibits the spatiotemporal chaos beyondr H , giving rise
to an ordered pattern. All the necessary conditions to ach
the behaviors described above are still a matter of fut
research.
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