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Wave fronts and spatiotemporal chaos in an array of coupled Lorenz oscillators
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The effects of coupling strength and single-cell dynant®€D) on spatiotemporal pattern formation are
studied in an array of Lorenz oscillators. Different spatiotemporal structsteBonary patterns, propagating
wave fronts, short wavelength bifurcatjoarise for bistable SCD, and two well differentiated types of spa-
tiotemporal chaos for chaotic SClin correspondence with the transition from stationary patterns to propa-
gating front3. Wave-front propagation in the bistable regime is studied in terms of global bifurcation theory,
while a short wavelength pattern region emerges through a pitchfork bifurcation.
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[. INTRODUCTION coupling matrix. Although the case=1 has been studied
extensively, there exists a large gap referring to greater di-
The study of networks of coupled systems is an interestmensions §>1).
ing issue from both mathematical and applied physics points
of view. In this paper, we focus on a one-dimensional array Il. MODEL
of systems such that each cell evolves in time according to
an ordinary differential equatiofODE). Assemblies of this The type of functiorf in Eq. (1), the coupling strengtD,
kind are known adattice dynamical systemd DS’s). The and the coupling matriX” determine the dynamics of the
simplification arises from the fact that units are describedvhole array. Due to its well studied phase space and its
just by ODE'’s, so the field of application is significantly richness of behaviors, we deal with the Lorenz oscillator as a
wide: lasers[1], neural systemg2], Josephson junctions unit cell (n=3). In particular, we focus on the bistable re-
[3,4], reaction-diffusion systemis], and electronic oscilla- gion and the transition to the chaotic region. Arrays consist-
tors [6,7], among others. LDS’s are relevant not only in ing of Lorenz oscillators connected through a local, nearest
physics, but also in biology. Paradigmatic examples are thgeighbor coupling have been considered in recent works
Nagumo[8] and the FitzHugh-Nagumf®] models, where [15,21,23.
the dynamics of a single unit is described by one and two In what concerns the type of coupling matrix, several situ-
variables, respectively. Phenomena such as the propagati@tions seem to be quite natural. These are the cases where all
of traveling wave fronts have been studied from a maththe elements of” are zero except onéhat we take to be
ematical point of view 10-14]. equal to 1. The casel’=1 has been studied very recently
However, cases where the dynamics of a single cell21,22. Three situations are of special interest as long as
within an array is described by two or more variables havehey present front propagatidthis phenomenon will be ex-
aroused a great deal of interest in recent years. Here pattephained in detail beloyw
formation arising in bistable systems can show interesting
propertieq 15], and if the array consists of a certain number 010
of coupled chaotic oscillators complex behaviors, such as r—_( 0 0 0
nontrivial collective behaviof16], size instability[17], ro-
tating waveq 18,19 or partial synchronizatioh20] can de- 000 5
velop. What behaviors may be expected and what exactly is @)
the role of the coupling strength are just two of the unsettled

Lestions. Here we v to aain some insiaht into these brobs For the rest of the coupling matrices, the identity matrix
F(Iams : ytog 9 ProBg; matrices with one element different from zero, no front

. . . propagation has been obtained numericg2l§]. We decided

In this paper, we study an array made up of |(_jent|calt0 focus on the first coupling matrix in E¢R) since in this
umts. The coupling among them is of diffusive tyjiee., case, as will be shown later, the system undergoes a short
bidirectiona), wavelength bifurcation which enriches the kind and number
of patterns described later.
Thus our dynamical equations are

o = O
o O O
o O O
o O O
o - O
o O O

. D
rj:f(rj)+EF(rj+]_+rj71_2rj)a (1) D
Xj=o(y;=x)+ 5 (Yjratyj-172y)),

wherer;e R". D is the coupling parameter, arid is the : ]
Yi=rx;—=xjzj=y;, j=1,...N

*Email address: diego@fmmeteo.usc.es; http://chaos.usc.es ijzxjyj—sz . 3

1063-651X/2001/6)/0662067)/$20.00 63 066206-1 ©2001 The American Physical Society



PAZQ MONTEJO, AND PIREZ-MUNUZURI PHYSICAL REVIEW E 63 066206

147
12

10

| I| “

| |

D 1 1 1
5 10 15 20 25 30 35

r

FIG. 1. Phase space of the patterns obtained for an array of coupled Lorenz oscillators. Left regions corresgandvibere the
Lorenz oscillator is bistable, and right regions correspond o where the Lorenz oscillator is chaotic. A representative temporal
evolution of a ring is located for each zone. They display, in gray scale toerdinate vs time that runs downward; initial conditions are
random. Each region corresponds to a different characteristic dynamics. Region I: multisi@kiljtspatial chags Region II: front
propagation. Region llI: short-wavelength ordering. Region V: spatiotemporal chaos. Region VI: spatiotemporal chaos with front propaga-
tion. Region VII: short-wavelength ordering with transient chaos. Region IV: spatiotemporal chaos without clusters. Solid lines correspond
to theoretical result® . andDy, [Egs.(6) and(7), respectively.

Off-diagonal diffusive-type coupling appears in mechani-r is shown in Fig. 1. We analyze the bistable region in Sec.
cal models with elastic junctions, like the stick-slip Burridge- 1ll, and the chaotic one in Sec. IV.
Knopoff model(see, e.g., Ref.24], and references thergin
Moreover, in terms of an electronic caricature, this coupling
represents an active transmission line where cells are coupled
through capacitances and inductances. As mentioned above, the single-unit fixed poidts are
Both periodic and null-flow boundary conditions are used.stable in the rangél, r). Therefore, the whole system is
The parameterg andb are fixed at the values=10 and  multistable in that rangf25] for D=0.
b=28/3. The other relevant parameter besides the coupling
strengthD is r, that controls the internal staiehaotic or
bistablg of the oscillators. For the dynamics of a single unit,

Ill. BISTABLE REGION

A. Traveling fronts

there exists a critical value Traveling front propagation has been a long-term field of
research. Restricting ourselves to the bistable case, there are

o(o+b+3) two paradigmatic examples: the Nagumo and FitzHugh-

rH:m' (4) Nagumo equations. Classically, fronts connect a pair of

stable fixed points and propagate, driving the system toward
which for the given values of andb is r,~24.74. For 1  its most stable state. Consider, for example, one-variable

<r<ry the units are bistable, with two symmetric stablecells, namely, u,=f(u,)+D(Up;1+U,_1—2U,). Then
fixed pointsC.=[*b(r—1),+=b(r—1),r—1] and one propagation will only succeed iff(u)du+0. Furthermore,
unstable fixed point at the origin. Far>ry all the fixed it does not occur untiD is larger than a critical valuBy,, .
points are unstable and the unit exhibits the well known Lo-Because of the discreteness of the syst@y,>0, while
renz strange attractor. D,=0 for the continuous version. The existence of a thresh-

A fourth-order Runge-Kutta method was used to integrateold for the discrete systems is called “propagation failure”
Eq. (3). A diagram of the patterns obtained by varyingand ~ [10].
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o R 2 B B = cell dynamics is depicted. The transition to the propagating
solution is as follows: as the coefficiem is increased,
boundaries between domains of both solutio@s @ndC )
become smoother than the steplike boundary observed for
D=0. That is, some oscillators move to the vicinity ©f;

» andC_ . At a given value oD the boundaries start to oscil-

<= Jui],

late, i.e., they undergo a Hopf bifurcation, but they do not
propagatgseeD =6.6 in Fig. 2, until finally, over a thresh-
D=5 D=66 D = 6.6652 D=7 old Dy, propagation occurs. If the array is opémull-flow
o o ) boundary conditiopj the whole system finally collapses to
'(:)'G' 2._”Atstepl(|ke2|8)|t|al cogdm_on 'ls mpgssed fodr a ”29 O  one of the two stable solutions. On the other hand, for the
=50 oscillators (= Cri=C,i=1, ..., andri~C_,j . - L .
=26, ...,50. The value of the variablg is representéd in gray Zﬁrs]g Sja?/en_?%?ﬁré%?&%:ﬁ:';gi%ec?gg::ﬁnStatlonary trav-

scale. For high enougb, fronts start to propagate. Just on the ) . d f the bif
threshold D,,=6.6652) the system is not able to propagate fronts In order to obtain a more precise knowledge of the bifur-

without undergoing spontaneous reversals. Just above the threshdi@tion arising in the system, in Fig. 3 we represent the pro-
the propagation does not change its sense spontaneously. In the c4@6tion, onto the plane-y, of the trajectory followed by all
shown here, both fronts move in the same sense, giving a stabl@€ oscillators of the array. FdD=0, oscillators are in a
traveling-wave solution; if both fronts propagate in opposite sensessteplike configuration; a® increases, a few cells in the
the whole ring will collapse teC, or C_ . neighborhood of the border of the steplike initial condition
go to nearby points t€, andC_ . At D~6.92 the symme-

Propagation in continuous bistable systems has been exy of the system is broken through a pitchfork bifurcation,
tensively studied in Refl26]; showing that propagation is and is recovered when one of the oscillators reaches the ori-
possible insymmetric nongradienteaction-diffusion sys- gin atD~6.95. AtD~7.5 the stationary front solution be-
tems. It is known that a transition from a static front to acomes unstable through a supercritical Hopf bifurcation.
propagating front involves a symmetry breaking of the frontThis corresponds to the point where the boundary between
[26] through a pitchfork bifurcation. Here we show an ap-both domains begins to oscillateee Fig. 2. The amplitude
parently new way to break symmetry and, therefore, toof the oscillations grows witd. Finally, for D=D,~8.85,
achieve propagation for the discrete case. For the Lorenthe orbit of each oscillator collides with the orbits of its
oscillator, we havesymmetry under the transformation neighbors[27]. This collision originates a multiple hetero-
(X%,¥,2)—(—x,—Y,2z), implying two stablesymmetricfixed  clinic connection. If the system is infinite, in terms of global
points (C..). Beyond a critical valu®,,,, fronts can propa- coordinates, the situation can be reduced to a pair of symme-
gate in both senses with the same probabilitgcause of the try related homoclinic connections in a periodic phase space.
symmetry of the equatiopsDiscreteness has traditionally This situation is similar to the pendulum problem, where a
been considered as a propagation inhibitor, but it is just theet of separatrice@wo in a cylindrical phase sparéivide
discreteness that now provides a route for propagation.  the phase space into several characteristic dynattiims-

In Fig. 2 the effect of varyingd for our bistable single tion and two opposite senses of rotajioihus, in the last

8 : . . 8 . . : 8 X : . 8 : . .
oo S L e oo FIG. 3. Transition to propaga-
aboiigm Al aba aba tion of a front from the trivial so-
et 5 5 : 5 : : : 5 5 luti tD=0 asD increases. A
e oo oo oo ution a
m ob i ob i eh i el projection onto thex-y plane of
. o o S the trajectory, followed by the os-
/ C— cillators of the array, is shown for
i SRR ARSA SRR RS B | St SRS EARAS AR M| RRRR SRARS ARSI SRR Ml AR SR A S r=8 and different values of the
=0 ., D=6 : §D=6';93 §D=7?4 coupling strengthD. For 0<D
— — -8 — -8 — <6,92 the system is odd symmet-

ric in the x-y plane. ForD~6.92
this symmetry is broken through a

8 : : : 8 8 8 pitchfork bifurcation, but is recov-
: Q\ ered again forD~6.95. At D
ApcreieNe 4 4 ~7.55 the system undergoes a su-
' percritical Hopf bifurcation, so
e ] £ AR R 0 Of-vivorfifoviens that the front starts to oscillate. A
: further increase ob enlarges the
b~ g At NN orbit of each oscillator. Finally,
b | D=8 for D~8.85, all the orbits collide
" Mo 8 " with their neighbor orbits. For a
-8 4 0 4 8 -8 4 0 4 8 -8 8 largerD, propagation occurs.
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FIG. 4. Front propagation speég) as a function of the coupling ) ) ) )
strengthD for r=8. t.u. (time unit. FIG. 5. Maximum eigenvalues at the uniform state<in as a

function ofk for D=1,2,...,11 and =20.

picture of Fig. 3, when propagation occurs the oscillators
follow a trajectory fromC, to C_, close to the set of het- values ofD. Fork=0 the stability is independent &, and
eroclinic orbits. The opposite solutiafrom C_ to C,) is  the fixed point is a spiral sinkbecause the less attracting
also possible, and is odd symmetric compared to the oneigenvalues are complex conjugatedowever, for a large
displayed in Fig. 3. enough value oD, the shortest wavelength Fourier modes

The front velocityc, near the onset, arising from this route (k~N/2) are governed by the real eigenvalue. The maxi-
does not follow a square root law with—Dy;,, as is usually ~mum value of this eigenvalue is &&= N/2 (shortest wave-
found for other systemsgsee Fig. 4 instead it shows an length, and crosses zero Bt=D. At this point, the deter-
inflection point for middle values dD, and near the thresh- minant of the Jacobian matri&(k=N/2) is zero. This
old valuec grows abruptly. In Ref[28] the author found a condition gives the value db.:
system(for n=1) that belongs to a different universality
class, but propagation occurs only in the presencasym- D :UE 6)
metry. A detailed analysis of the front velocity for the route ¢ '

r—2
explained above will be published elsewhere.
The result for an open array is the same as that for a ring up

B. Short-wavelength bifurcation to O(1/N?). Above this critical value other modes become
o ] unstable, and the dynamics turns out to be more complex
The trivial solutionsr,=r,=---=ry=C.. are stable up than the one shown in the top pictures of Fig. 1.

to a critical value of the coupling parameter. For this

value, a short-wavelength bifurcation arigese Fig. 1, and

a stationary patterfzigzag develops consisting of an alter-

nate sequence of cells in the vicinity @f, (or C_). This At r =ry the single unit fixed point€_. become unstable

pattern can coexist for some time with front propagationthrough a subcritical Hopf bifurcation. The behavior of an

and, in this case, at both sides of the wave front, for eaclsolated Lorenz oscillator then becomes chaoticrferr .

domain, the zigzag pattern has been observed. The system does not possess any stationary or periodic stable
For a ring, the observed critical value fits very well with state.

that calculated D) from a linear stability analysis of the For D=0 the oscillators are uncoupled, and the whole

Fourier modes around any of the fixed poifits . The secu- system is highly chaotic. The situation persists for low val-

IV. CHAOTIC REGION

lar equation for the Fourier modesyy) is ues ofD. Finally, as the coupling increases, the system tends
) to form clusters arounc€, and C_. The development of
7= S(K) 7k, clusters occurs in a very smooth way; hence a precise limit
cannot be assigned to such transition. An analytical calcula-
—¢ o—2D sinz(lk) 0 tion shows the tendency toward clustgr formatiom geows.
N The latter proceeds through calculations of the eigenvalues
S(k)= 1 1 <l (5)  of the system at the uniform statell the oscillators are in
the same fixed point We first note that ab=0 all Fourier
+c +c -b modes are unstabl@assumingr>ry). But, as long asD

. increases enough, there is a Fourier mode that becomes
wherec=b(r—1). The real part of the most unstable ei- stable. This mode ik=N/2 (the shortest wavelength magle
genvalue is plotted in Fig. 5 as a function lofor different  the fact that this mode becomes stable causes the dynamics
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FIG. 6. Different behaviors for
several couplinggD) for r=28
(the same initial condition was
imposed in all casgsThe behav-
ior of the system changes drasti-
cally at two values ofD. One
point separates propagation and
no propagation of fronts, and is
located betwee =6 and 7. The
second point separates the zone
where short-wavelength bifurca-
tion arises, and is located just
above D=¢=10. In the picture
corresponding td =11, the sys-
tem suffers a short-wavelength bi-
furcation with two dislocations
(located at the center and at the
right-hand sidg

D

of neighboring oscillators to diverge less strongly than be-boundaries propagate as traveling wateee Figs. 1 and)6
fore; this can be considered as the beginning of cluster forBecause of the instability of the fixed points, front reversals
mation. The value ob corresponding to this point is a func- are observed, as is the spontaneous formation of new clusters
tion of r: through the appearance of two counter propagating fronts.
The formation of new clusters becomes more frequent as
grows. So, for just abover, the whole array is maintained
N:(U+1+b)b(0+r)_20b(r_1) _ (7 foralong time, with all the oscillators turning around one of
2[c+1+b(3~r1)] the fixed points(eitherC, or C_), until two counterpropa-
gating fronts are able to emerge. Recall that, independently

The corresponding curve is shown in Fig. 1. On the OtheIOf the initial conditions, the onset of trave!ing. fror!ts makes
hand, the maximum transverse Lyapunov expongpts of the system coIIapsQ aroud, or C_. For this situation, the
each modey, , calculated around the chaotic synchronizedPh@se ¢) and amplitudeA) can be properly defineiB0] by
state(see, e.g., Ref29]), show a dependence @ equiva- means of the prqjectlon shown in Fig. 7. We chose to define
lent to the behavior of the Lyapunov exponents at the fixed®h@se and amplitude as folloya1]:
points, but the modk= N/2 becomes stable at a larger value —
of D. The system “prefers” to form clusters around fixed ¢=arctar( VE+y?—2b(r —1) ®
points rather than forming an extended coherent structure z—(r—1) '
(consisting for example of some cells of the array partially
synchronize@l with the_ Lorer_12 chaotic attractor as the_ basis A?=[|x|— vb(r—1)12+[|y|— Vb(r—1)]>+[z— (r—1)]%.
for each cell dynamics. Since our clusters are defined as 9)
long-lasting ensemble of cells close@a or C_, transverse
Lyapunov exponents around the chaotic synchronized state There are domains where the phase of the neighbor oscil-
do not give any new information. lators is highly correlatedsee Fig. 8 The limits of these

At higher values ofD, for which traveling waves ap- domains are oscillators whose amplitude is zero or close to
peared forr<ry, now the array forms clusters whose zero, and could be considered as deféict@nalogy with the
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Ginzburg-LandauGL) equation phenomenologyThe sub- S 1

critical Hopf bifurcation observed in the Lorenz oscillator e

does not involve a pair of stable limit cyclésne forC, , %

and another forC_). There is not a range of values of = == E
where the system presents multistability between a limit ¥ y % 2
cycle and a fixed poirit32,33. Therefore, the transition ob- — - =~ %%‘W
served in the array cannot be considered simply as a diss - ¥ i :%%—w ExY
cretized subcritical GL transition i@ or C_ [34,35. A - NN = ;/“\ =

Finally, it must be pointed out that, asgrows, the fixed
points C.. become more and more unstable. As a conse- FIG. 8. The system fob=8 andr=25, 26, 27, and 28. Each
guence, cluster sizes become smaller, and eventually it is n@tlue ofr shows three pictures, from left to right:variable, am-
possible to distinguish between nonpropagating and propaplitude, and two-color-discretized phase. As long a@screases the
gating regions. phase correlation diminishes, because of the appearance of more

With respect to the short-wavelength bifurcation arisingfronts and defectésmall amplitude, i.e., white colpr
in the bistable region, this structure remains stable beyond
ry. The (Hopf) instability of C.. does not affect the zigzag
structures bifurcated from the uniform solutions. An analyti-D reaches a critical value fronts start to oscillate due to the
cal calculation of the stability of these patterns is not fea-onset of a supercritical Hopf bifurcation. Whdm is in-
sible, because the solutions depend on bo#imd D. How-  creased further, the amplitude of the oscillations grows until
ever, we can argue that the result obtained in (Bycan be  two symmetry related heteroclinic connections appear. A
extended successfully to the chaotic regi@ig. 1). In this  further increasing oD causes propagation of the fronts. For
region the modé&=0 is unstable, and asincreases further this kind of route to front propagation, wave velocity was not
from ry some long wavelength mode&=1,2,...) also  found to follow a square root law with — D, . Moreover, it
become unstable. So, in this zone, the problem is harder t§eems that this route to propagation needs of units whose
treat than in the bistable zone, because there. is more t_han OBfinension is two or more. The Hopf bifurcation is an essen-
unstable mode. The dynamics of the system is determined by, ingredient, and each unit needs a two-dimensional mani-
the behavior of each Fourier mode. Wherka<) is unstable ¢4 to oscillate.

(independently oD), long-wavelength modes stabilize Bs

increases. On the other hand, short-wavelength modes bBécome unstable fdd <D, the system exhibits two types

come stable for lowD but turn unstable again whdb ap- ; .
of spatiotemporal chaos depending on whether front propa-
proachesD.. Therefore, the shortest-wavelength modes b P b 9 brop

: _ .~ -gation exists or not. In the propagating region we find two
govern the dynamms at high valuesif D_ue to the chaotic characteristic processes: spontaneous creation of counter-
dynamics existing for>r, the system is eventually close

. ) ; ; ropagating fronts and front reversal. The boundary that
enough to one of the uniform solutions, and then is shifted t pagating y

t the f . it eparated propagating and nonpropagating regions in the
one ot the lrozen zigzag patterns. bistable case now separates these two kinds of spatiotempo-

ral chaos.
We have also found that over a certain coupling the sys-
This paper studies an array of oscillators where wavetem undergoes ahort-wavelength bifurcationThis kind of
front solutions arise. Starting from the uncoupled case, whehifurcation is observed in discrete systems only; we also ob-

Furthermore, it has been shown that once the fixed points

V. CONCLUSIONS
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